Package: geostan 0.8.0
geostan: Bayesian Spatial Analysis
For spatial data analysis; provides exploratory spatial analysis tools, spatial regression, spatial econometric, and disease mapping models, model diagnostics, and special methods for inference with small area survey data (e.g., the America Community Survey (ACS)) and censored population health monitoring data. Models are pre-specified using the Stan programming language, a platform for Bayesian inference using Markov chain Monte Carlo (MCMC). References: Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Donegan (2021) <doi:10.31219/osf.io/3ey65>; Donegan (2022) <doi:10.21105/joss.04716>; Donegan, Chun and Hughes (2020) <doi:10.1016/j.spasta.2020.100450>; Donegan, Chun and Griffith (2021) <doi:10.3390/ijerph18136856>; Morris et al. (2019) <doi:10.1016/j.sste.2019.100301>.
Authors:
geostan_0.8.0.tar.gz
geostan_0.8.0.zip(r-4.5)geostan_0.8.0.zip(r-4.4)geostan_0.8.0.zip(r-4.3)
geostan_0.8.0.tgz(r-4.4-arm64)geostan_0.8.0.tgz(r-4.3-arm64)
geostan_0.8.0.tar.gz(r-4.5-noble)geostan_0.8.0.tar.gz(r-4.4-noble)
geostan.pdf |geostan.html✨
geostan/json (API)
NEWS
# Install 'geostan' in R: |
install.packages('geostan', repos = c('https://connordonegan.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/connordonegan/geostan/issues
- sentencing - Florida state prison sentencing counts by county, 1905-1910
bayesianbayesian-inferencebayesian-statisticsepidemiologymodelingpublic-healthrspatialspatialstan
Last updated 5 days agofrom:fe22d2bb8d. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win-x86_64 | WARNING | Nov 18 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 18 2024 |
R-4.4-win-x86_64 | WARNING | Nov 18 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 18 2024 |
R-4.3-win-x86_64 | WARNING | Nov 18 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 18 2024 |
Exports:apleauto_gaussiandicedgeseigen_gridexpected_mcgamma2get_shpgrhsimpactslglisalog_likmake_EVmcme_diagmoran_plotn_effn_nbsnormalposterior_predictprep_car_dataprep_car_data2prep_icar_dataprep_me_dataprep_sar_dataprep_sar_data2row_standardizese_logshape2matsim_sarsp_diagspatialspillstan_carstan_esfstan_glmstan_icarstan_sarstudent_tuniformwaic
Dependencies:abindbackportsBHbootcallrcheckmateclassclassIntclicolorspaceDBIdeldirdescdistributionale1071fansifarvergenericsggplot2gluegridExtragtableinlineisobandKernSmoothlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigposteriorprocessxproxypsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelrlangrstanrstantoolss2scalessfsignsspspDataspdepStanHeaderstensorAtibbletruncnormunitsutf8vctrsviridisLitewithrwk
Custom spatial models with RStan and geostan
Rendered fromcustom-spatial-models.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-11-15
Started: 2023-10-04
Exploratory spatial data analysis
Rendered frommeasuring-sa.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-11-16
Started: 2021-01-06
Raster regression
Rendered fromraster-regression.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-11-04
Started: 2023-05-01
Spatial analysis with geostan
Rendered fromspatial-analysis.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-11-15
Started: 2024-10-31
Spatial measurement error models
Rendered fromspatial-me-models.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-11-16
Started: 2021-09-14
Spatial weights matrix
Rendered fromspatial-weights-matrix.Rmd
usingknitr::rmarkdown
on Nov 18 2024.Last update: 2024-06-02
Started: 2024-05-09
Readme and manuals
Help Manual
Help page | Topics |
---|---|
The geostan R package. | geostan-package geostan |
Edge list | edges |
Expected value of the residual Moran coefficient | expected_mc |
Extract eigenfunctions of a connectivity matrix for spatial filtering | make_EV |
The Moran coefficient (Moran's I) | mc |
Moran scatter plot | moran_plot |
Sample from the posterior predictive distribution | posterior_predict |
Florida state prison sentencing counts by county, 1905-1910 | sentencing |
Create spatial and space-time connectivity matrices | shape2mat |
Spatial filtering | stan_esf |
Intrinsic autoregressive models | stan_icar |
Model comparison | dic waic |